An Automatic Traffic Classification System for Operational Networks

2nd TMA PhD School, Napoli 2011

Valentín Carela-Español
Pere Barlet-Ros
Josep Solé-Pareta

{vcarela, pbarlet, pareta}@ac.upc.edu
Outline

- Introduction
- Literature
- Proposed solution
 - The Application Identifier
 - The Automatic Retraining System
- Evaluation
Outline

- Introduction
- Literature
- Proposed solution
 - The Application Identifier
 - The Automatic Retraining System
- Evaluation
Introduction

● What is application identification?

● What is application identification used for?
 • Network planning and dimensioning
 • Performance evaluation
 • Charging and billing
 • QoS policies
 • Research purposes
Introduction

- Tons of papers have presented novel classification solutions

- Network operators still use obsolete methods

- What is slowing down the deployment of these novel techniques? Which are the features that operators are interested in?
 - Easy to deploy
 - Easy to maintain
 - High accuracy and completeness
Outline

- Introduction
- Literature
- Proposed solution
 - The Application Identifier
 - The Automatic Retraining System
- Evaluation
Well-known ports
 - Low accuracy and completeness

DPI-based (pattern matching)
 - Do not classify encrypted traffic
 - Computationally expensive

Machine Learning-based
 - Difficult training phase

Host-behaviour-based
 - Highly dependent on the monitoring point
 - Do not differentiate between applications with the same behaviour

Service and IP-based
 - Low completeness
Outline

- Introduction
- Literature
- Proposed solution
 - The Application Identifier
 - The Automatic Retraining System
- Evaluation
Proposed solution

How we deal with operators constraints?

- **Easy to deploy**
 - Using Sampled NetFlow as input for the classifier
 - NetFlow is already available on routers
 - Sampling decreases the load of the routers

- **Easy to maintain**
 - The automatic retraining system

- **High accuracy and completeness**
 - Combination of different techniques from the literature
The Application Identifier

- Using only Sampled NetFlow (v5) data as input
 - \(<\text{IPs, ports, \#pkts, \#bytes, protocol, ToS, TCP flags and duration}>\)

- Method based on multiple classification techniques:
 - Machine Learning-based [1]
 - Using the C5.0 technique, the enhanced successor of the well-known C4.5 decision tree, with the optimization proposed in [1] to deal with sampled traffic
 - Service-based [2]
 - Automatic detection of services: \(<\text{IP, port, protocol}>\) assigned to a specific application.
 - IP-based [3]
 - Using the IPs from well-known video-sharing applications (e.g. youtube, megavideo)

The Automatic Retraining System

- **Automatic Retraining System**
 - Continuously check the classifier accuracy
 - Retrain the system when the accuracy falls below a threshold

- Combines different DPI techniques to set the ground truth
 - PACE
 - OpenDPI
 - L7-Filter
Outline

- Introduction
- Literature
- Proposed solution
 - The Application Identifier
 - The Automatic Retraining System
- Evaluation
Evaluation

• Dataset
 • UPC-II trace [1] for the initial training of the classifier
 – A fifteen-minutes full payload trace collected in December 2008 at
 the Gigabit access link of the UPC.
 • CESCA trace for the validation
 – A fourteen-days packet trace collected in February 2011 at the
 10-Gigabit access link of the Anella Científica, link that connects
 the Catalan RREN with the Spanish NREN. Collected with a
 1/400 flow sampling rate.

• Retraining policy
 • Different accuracy thresholds (94%, 96%, 98%)
 • 500,000 flows as upper bound for the retraining
 • Flows from the last 7 days as base-truth.

Evaluation
Thank you for your attention

Questions?